作者 钟来

修改bug

... ... @@ -63,7 +63,7 @@
<artifactId>swagger-bootstrap-ui</artifactId>
<version>${swagger-ui.version}</version>
</dependency>
</dependencies>
</dependencies>
<build>
<finalName>lh-alarm</finalName>
... ...
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>Luhui</artifactId>
<groupId>com.zhonglai.luhui</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>lh-openai</artifactId>
<dependencies>
<!-- spring-boot-devtools -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<optional>true</optional> <!-- 表示依赖不会传递 -->
</dependency>
<!-- Mysql驱动包 -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
<!-- 核心模块-->
<dependency>
<groupId>com.zhonglai.luhui</groupId>
<artifactId>ruoyi-framework</artifactId>
</dependency>
<!-- 文档 -->
<dependency >
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger2</artifactId>
<version>${swagger.version}</version>
<exclusions>
<exclusion>
<groupId>io.swagger</groupId>
<artifactId>swagger-models</artifactId>
</exclusion>
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</exclusion>
</exclusions>
</dependency>
<!--https://mvnrepository.com/artifact/io.swagger/swagger-models-->
<dependency>
<groupId>io.swagger</groupId>
<artifactId>swagger-models</artifactId>
<version>${swagger-models.version}</version>
</dependency>
<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger-ui</artifactId>
<version>${swagger.version}</version>
</dependency>
<!--&lt;!&ndash; https://mvnrepository.com/artifact/com.github.xiaoymin/swagger-bootstrap-ui &ndash;&gt;-->
<dependency>
<groupId>com.github.xiaoymin</groupId>
<artifactId>swagger-bootstrap-ui</artifactId>
<version>${swagger-ui.version}</version>
</dependency>
<dependency>
<groupId>com.theokanning.openai-gpt3-java</groupId>
<artifactId>service</artifactId>
<version>0.10.0</version>
<exclusions>
<exclusion>
<groupId>com.squareup.okhttp3</groupId>
<artifactId>okhttp</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.squareup.okhttp3</groupId>
<artifactId>okhttp</artifactId>
<version>4.10.0</version>
</dependency>
</dependencies>
<build>
<finalName>lh-openai</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>
<!--
生成的jar中,不要包含pom.xml和pom.properties这两个文件
-->
<addMavenDescriptor>false</addMavenDescriptor>
<manifest>
<!--
是否要把第三方jar放到manifest的classpath中
-->
<addClasspath>true</addClasspath>
<!--
生成的manifest中classpath的前缀,因为要把第三方jar放到lib目录下,所以classpath的前缀是lib/
-->
<classpathPrefix>lib/</classpathPrefix>
<mainClass>com.zhonglai.luhui.alarm.AlarmApplication</mainClass>
</manifest>
</archive>
</configuration>
</plugin>
<!-- The configuration of maven-assembly-plugin -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.4</version>
<configuration>
<descriptors>
<descriptor>src/main/resources/package.xml</descriptor>
</descriptors>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
\ No newline at end of file
... ...
package com.zhonglai.luhui.openai;
import com.ruoyi.framework.aspectj.LogAspect;
import com.ruoyi.framework.aspectj.RateLimiterAspect;
import com.ruoyi.framework.config.FilterConfig;
import com.ruoyi.framework.config.SecurityConfig;
import com.ruoyi.framework.security.filter.JwtAuthenticationTokenFilter;
import com.ruoyi.framework.security.handle.LogoutSuccessHandlerImpl;
import com.ruoyi.system.login.service.LoginService;
import com.ruoyi.system.login.service.TokenService;
import com.ruoyi.system.service.impl.SysConfigServiceImpl;
import com.ruoyi.system.service.impl.SysDictTypeServiceImpl;
import com.ruoyi.system.service.impl.SysUserServiceImpl;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.FilterType;
@ComponentScan(basePackages = {
"com.ruoyi.common",
"com.ruoyi.system",
"com.ruoyi.framework",
"com.zhonglai.luhui.openai.properties",
"com.zhonglai.luhui.openai.service",
"com.zhonglai.luhui.openai.controller"
}
)
@SpringBootApplication(exclude = { DataSourceAutoConfiguration.class })
public class OpenaiApplication {
public static void main(String[] args) {
SpringApplication.run(OpenaiApplication.class,args);
System.out.println("启动成功");
}
}
... ...
package com.zhonglai.luhui.openai.controller;
import com.ruoyi.common.core.domain.Message;
import com.ruoyi.common.core.domain.MessageCode;
import com.theokanning.openai.completion.CompletionChoice;
import com.zhonglai.luhui.openai.utils.OpenAiUtils;
import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import org.springframework.web.bind.annotation.*;
import java.util.List;
@Api(tags = "chatGPT接口")
@RestController
@RequestMapping("/chatgpt")
public class ChatGPTController {
@ApiOperation("与AI机器进行聊天")
@RequestMapping(value = "/aiChatbot",method = RequestMethod.POST)
public Message aiChatbot(@RequestBody String data)
{
List<CompletionChoice> list = OpenAiUtils.getAiChatbot(data);
return new Message(MessageCode.DEFAULT_SUCCESS_CODE,list);
}
}
... ...
package com.zhonglai.luhui.openai.pojos;
/**
* 实体类
*/
public class OpenAi {
String id;
String name;
String desc;
String model;
// 提示模板
String prompt;
// 创新采样
Double temperature;
// 情绪采样
Double topP;
// 结果条数
Double n = 1d;
// 频率处罚系数
Double frequencyPenalty;
// 重复处罚系数
Double presencePenalty;
// 停用词
String stop;
public OpenAi() {
}
public OpenAi(String id, String name, String desc, String model, String prompt, Double temperature, Double topP, Double n, Double frequencyPenalty, Double presencePenalty, String stop) {
this.id = id;
this.name = name;
this.desc = desc;
this.model = model;
this.prompt = prompt;
this.temperature = temperature;
this.topP = topP;
this.n = n;
this.frequencyPenalty = frequencyPenalty;
this.presencePenalty = presencePenalty;
this.stop = stop;
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getDesc() {
return desc;
}
public void setDesc(String desc) {
this.desc = desc;
}
public String getModel() {
return model;
}
public void setModel(String model) {
this.model = model;
}
public String getPrompt() {
return prompt;
}
public void setPrompt(String prompt) {
this.prompt = prompt;
}
public Double getTemperature() {
return temperature;
}
public void setTemperature(Double temperature) {
this.temperature = temperature;
}
public Double getTopP() {
return topP;
}
public void setTopP(Double topP) {
this.topP = topP;
}
public Double getN() {
return n;
}
public void setN(Double n) {
this.n = n;
}
public Double getFrequencyPenalty() {
return frequencyPenalty;
}
public void setFrequencyPenalty(Double frequencyPenalty) {
this.frequencyPenalty = frequencyPenalty;
}
public Double getPresencePenalty() {
return presencePenalty;
}
public void setPresencePenalty(Double presencePenalty) {
this.presencePenalty = presencePenalty;
}
public String getStop() {
return stop;
}
public void setStop(String stop) {
this.stop = stop;
}
}
... ...
package com.zhonglai.luhui.openai.properties;
import com.zhonglai.luhui.openai.utils.OpenAiUtils;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
@Component
public class OpenAiProperties implements InitializingBean {
@Value("${chatgpt.token}")
private String token; //秘钥
@Value("${chatgpt.timeout}")
private Integer timeout; //超时时间
// 设置属性时同时设置给OpenAiUtils
@Override
public void afterPropertiesSet() {
OpenAiUtils.OPENAPI_TOKEN = token;
OpenAiUtils.TIMEOUT = timeout;
}
}
... ...
package com.zhonglai.luhui.openai.properties;
import com.ruoyi.common.config.RuoYiConfig;
import io.swagger.annotations.ApiOperation;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import springfox.documentation.builders.ApiInfoBuilder;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.service.ApiInfo;
import springfox.documentation.service.Contact;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;
@Configuration
@EnableSwagger2
public class SwaggerConfig {
/** 系统基础配置 */
@Autowired
private RuoYiConfig ruoyiConfig;
@Bean
public Docket createRestApi() {
return new Docket(DocumentationType.SWAGGER_2)
.apiInfo(apiInfo())
.select()
.apis(RequestHandlerSelectors.withMethodAnnotation(ApiOperation.class))
.paths(PathSelectors.any())
.build();
}
/**
* 添加摘要信息
*/
private ApiInfo apiInfo()
{
// 用ApiInfoBuilder进行定制
return new ApiInfoBuilder()
// 设置标题
.title("标题:chatgpt接口")
// 描述
.description("描述:用于chatgpt")
// 作者信息
.contact(new Contact(ruoyiConfig.getName(), null, null))
// 版本
.version("版本号:" + ruoyiConfig.getVersion())
.build();
}
}
\ No newline at end of file
... ...
package com.zhonglai.luhui.openai.service;
import com.ruoyi.common.exception.ServiceException;
import com.ruoyi.common.utils.StringUtils;
import com.ruoyi.system.login.dto.ApiLoginUser;
import com.ruoyi.system.login.dto.Yu2leUserInfo;
import com.ruoyi.system.login.dto.Yu2leUserLogin;
import com.ruoyi.system.service.PublicService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.UsernameNotFoundException;
import org.springframework.stereotype.Service;
@Service
public class ChatgptDetailsServiceImpl implements UserDetailsService {
private static final Logger log = LoggerFactory.getLogger(ChatgptDetailsServiceImpl.class);
@Autowired
private PublicService publicService;
@Override
public UserDetails loadUserByUsername(String username) throws UsernameNotFoundException {
Yu2leUserLogin yu2leUserLogin = publicService.getObjectForTableName(Yu2leUserLogin.class,"loginName",username,"`liu_yu_le`.`user_login`");
Yu2leUserInfo yu2leUserInfo = publicService.getObjectForTableName(Yu2leUserInfo.class,"loginName",username,"`liu_yu_le`.`user_info`");;
if (StringUtils.isNull(yu2leUserLogin) || StringUtils.isNull(yu2leUserInfo))
{
log.info("登录用户:{} 不存在.", username);
throw new ServiceException("登录用户:" + username + " 不存在");
}
else if (1==yu2leUserInfo.getIsInvalid())
{
log.info("登录用户:{} 已被停用.", username);
throw new ServiceException("对不起,您的账号:" + username + " 已停用");
}
return new ApiLoginUser(yu2leUserInfo, yu2leUserLogin);
}
}
... ...
package com.zhonglai.luhui.openai.utils;
import com.theokanning.openai.OpenAiService;
import com.theokanning.openai.completion.CompletionChoice;
import com.theokanning.openai.completion.CompletionRequest;
import com.zhonglai.luhui.openai.pojos.OpenAi;
import org.springframework.util.StringUtils;
import java.util.*;
/**
* 调用OpenAi的49中方法
*/
public class OpenAiUtils {
public static final Map<String, OpenAi> PARMS = new HashMap<>();
static {
PARMS.put("OpenAi01", new OpenAi("OpenAi01", "问&答", "依据现有知识库问&答", "text-davinci-003", "Q: %s\nA:", 0.0, 1.0, 1.0, 0.0, 0.0, "\n"));
PARMS.put("OpenAi02", new OpenAi("OpenAi02", "语法纠正", "将句子转换成标准的英语,输出结果始终是英文", "text-davinci-003", "%s", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi03", new OpenAi("OpenAi03", "内容概况", "将一段话,概况中心", "text-davinci-003", "Summarize this for a second-grade student:\n%s", 0.7, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi04", new OpenAi("OpenAi04", "生成OpenAi的代码", "一句话生成OpenAi的代码", "code-davinci-002", "\"\"\"\nUtil exposes the following:\nutil.openai() -> authenticates & returns the openai module, which has the following functions:\nopenai.Completion.create(\n prompt=\"<my prompt>\", # The prompt to start completing from\n max_tokens=123, # The max number of tokens to generate\n temperature=1.0 # A measure of randomness\n echo=True, # Whether to return the prompt in addition to the generated completion\n)\n\"\"\"\nimport util\n\"\"\"\n%s\n\"\"\"\n\n", 0.0, 1.0, 1.0, 0.0, 0.0, "\"\"\""));
PARMS.put("OpenAi05", new OpenAi("OpenAi05", "程序命令生成", "一句话生成程序的命令,目前支持操作系统指令比较多", "text-davinci-003", "Convert this text to a programmatic command:\n\nExample: Ask Constance if we need some bread\nOutput: send-msg `find constance` Do we need some bread?\n\n%s", 0.0, 1.0, 1.0, 0.2, 0.0, ""));
PARMS.put("OpenAi06", new OpenAi("OpenAi06", "语言翻译", "把一种语法翻译成其它几种语言", "text-davinci-003", "Translate this into %s:\n%s", 0.3, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi07", new OpenAi("OpenAi07", "Stripe国际API生成", "一句话生成Stripe国际支付API", "code-davinci-002", "\"\"\"\nUtil exposes the following:\n\nutil.stripe() -> authenticates & returns the stripe module; usable as stripe.Charge.create etc\n\"\"\"\nimport util\n\"\"\"\n%s\n\"\"\"", 0.0, 1.0, 1.0, 0.0, 0.0, "\"\"\""));
PARMS.put("OpenAi08", new OpenAi("OpenAi08", "SQL语句生成", "依据上下文中的表信息,生成SQL语句", "code-davinci-002", "### %s SQL tables, 表字段信息如下:\n%s\n#\n### %s\n %s", 0.0, 1.0, 1.0, 0.0, 0.0, "# ;"));
PARMS.put("OpenAi09", new OpenAi("OpenAi09", "结构化生成", "对于非结构化的数据抽取其中的特征生成结构化的表格", "text-davinci-003", "A table summarizing, use Chinese:\n%s\n", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi10", new OpenAi("OpenAi10", "信息分类", "把一段信息继续分类", "text-davinci-003", "%s\n分类:", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi11", new OpenAi("OpenAi11", "Python代码解释", "把代码翻译成文字,用来解释程序的作用", "code-davinci-002", "# %s \n %s \n\n# 解释代码作用\n\n#", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi12", new OpenAi("OpenAi12", "文字转表情符号", "将文本编码成表情服务", "text-davinci-003", "转换文字为表情。\n%s:", 0.8, 1.0, 1.0, 0.0, 0.0, "\n"));
PARMS.put("OpenAi13", new OpenAi("OpenAi13", "时间复杂度计算", "求一段代码的时间复杂度", "text-davinci-003", "%s\n\"\"\"\n函数的时间复杂度是", 0.0, 1.0, 1.0, 0.0, 0.0, "\n"));
PARMS.put("OpenAi14", new OpenAi("OpenAi14", "程序代码翻译", "把一种语言的代码翻译成另外一种语言的代码", "code-davinci-002", "##### 把这段代码从%s翻译成%s\n### %s\n \n %s\n \n### %s", 0.0, 1.0, 1.0, 0.0, 0.0, "###"));
PARMS.put("OpenAi15", new OpenAi("OpenAi15", "高级情绪评分", "支持批量列表的方式检查情绪", "text-davinci-003", "对下面内容进行情感分类:\n%s\"\n情绪评级:", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi16", new OpenAi("OpenAi16", "代码解释", "对一段代码进行解释", "code-davinci-002", "代码:\n%s\n\"\"\"\n上面的代码在做什么:\n1. ", 0.0, 1.0, 1.0, 0.0, 0.0, "\"\"\""));
PARMS.put("OpenAi17", new OpenAi("OpenAi17", "关键字提取", "提取一段文本中的关键字", "text-davinci-003", "抽取下面内容的关键字:\n%s", 0.5, 1.0, 1.0, 0.8, 0.0, ""));
PARMS.put("OpenAi18", new OpenAi("OpenAi18", "问题解答", "类似解答题", "text-davinci-003", "Q: %s\nA: ?", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi19", new OpenAi("OpenAi19", "广告设计", "给一个产品设计一个广告", "text-davinci-003", "为下面的产品创作一个创业广告,用于投放到抖音上:\n产品:%s.", 0.5, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi20", new OpenAi("OpenAi20", "产品取名", "依据产品描述和种子词语,给一个产品取一个好听的名字", "text-davinci-003", "产品描述: %s.\n种子词: %s.\n产品名称: ", 0.8, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi21", new OpenAi("OpenAi21", "句子简化", "把一个长句子简化成一个短句子", "text-davinci-003", "%s\nTl;dr: ", 0.7, 1.0, 1.0, 0.0, 1.0, ""));
PARMS.put("OpenAi22", new OpenAi("OpenAi22", "修复代码Bug", "自动修改代码中的bug", "code-davinci-002", "##### 修复下面代码的bug\n### %s\n %s\n### %s\n", 0.0, 1.0, 1.0, 0.0, 0.0, "###"));
PARMS.put("OpenAi23", new OpenAi("OpenAi23", "表格填充数据", "自动为一个表格生成数据", "text-davinci-003", "spreadsheet ,%s rows:\n%s\n", 0.5, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi24", new OpenAi("OpenAi24", "语言聊天机器人", "各种开发语言的两天机器人", "code-davinci-002", "You: %s\n%s机器人:", 0.0, 1.0, 1.0, 0.5, 0.0, "You: "));
PARMS.put("OpenAi25", new OpenAi("OpenAi25", "机器学习机器人", "机器学习模型方面的机器人", "text-davinci-003", "You: %s\nML机器人:", 0.3, 1.0, 1.0, 0.5, 0.0, "You: "));
PARMS.put("OpenAi26", new OpenAi("OpenAi26", "清单制作", "可以列出各方面的分类列表,比如歌单", "text-davinci-003", "列出10%s:", 0.5, 1.0, 1.0, 0.52, 0.5, "11.0"));
PARMS.put("OpenAi27", new OpenAi("OpenAi27", "文本情绪分析", "对一段文字进行情绪分析", "text-davinci-003", "推断下面文本的情绪是积极的, 中立的, 还是消极的.\n文本: \"%s\"\n观点:", 0.0, 1.0, 1.0, 0.5, 0.0, ""));
PARMS.put("OpenAi28", new OpenAi("OpenAi28", "航空代码抽取", "抽取文本中的航空diam信息", "text-davinci-003", "抽取下面文本中的航空代码:\n文本:\"%s\"\n航空代码:", 0.0, 1.0, 1.0, 0.0, 0.0, "\n"));
PARMS.put("OpenAi29", new OpenAi("OpenAi29", "生成SQL语句", "无上下文,语句描述生成SQL", "text-davinci-003", "%s", 0.3, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi30", new OpenAi("OpenAi30", "抽取联系信息", "从文本中抽取联系方式", "text-davinci-003", "从下面文本中抽取%s:\n%s", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi31", new OpenAi("OpenAi31", "程序语言转换", "把一种语言转成另外一种语言", "code-davinci-002", "#%s to %s:\n%s:%s\n\n%s:", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi32", new OpenAi("OpenAi32", "好友聊天", "模仿好友聊天", "text-davinci-003", "You: %s\n好友:", 0.5, 1.0, 1.0, 0.5, 0.0, "You:"));
PARMS.put("OpenAi33", new OpenAi("OpenAi33", "颜色生成", "依据描述生成对应颜色", "text-davinci-003", "%s:\nbackground-color: ", 0.0, 1.0, 1.0, 0.0, 0.0, ";"));
PARMS.put("OpenAi34", new OpenAi("OpenAi34", "程序文档生成", "自动为程序生成文档", "code-davinci-002", "# %s\n \n%s\n# 上述代码的详细、高质量文档字符串:\n\"\"\"", 0.0, 1.0, 1.0, 0.0, 0.0, "#\"\"\""));
PARMS.put("OpenAi35", new OpenAi("OpenAi35", "段落创作", "依据短语生成相关文短", "text-davinci-003", "为下面短语创建一个中文段:\n%s:\n", 0.5, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi36", new OpenAi("OpenAi36", "代码压缩", "把多行代码简单的压缩成一行", "code-davinci-002", "将下面%s代码转成一行:\n%s\n%s一行版本:", 0.0, 1.0, 1.0, 0.0, 0.0, ";"));
PARMS.put("OpenAi37", new OpenAi("OpenAi37", "故事创作", "依据一个主题创建一个故事", "text-davinci-003", "主题: %s\n故事创作:", 0.8, 1.0, 1.0, 0.5, 0.0, ""));
PARMS.put("OpenAi38", new OpenAi("OpenAi38", "人称转换", "第一人称转第3人称", "text-davinci-003", "把下面内容从第一人称转为第三人称 (性别女):\n%s\n", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi39", new OpenAi("OpenAi39", "摘要说明", "依据笔记生成摘要说明", "text-davinci-003", "将下面内容转换成将下%s摘要:\n%s", 0.0, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi40", new OpenAi("OpenAi40", "头脑风暴", "给定一个主题,让其生成一些主题相关的想法", "text-davinci-003", "头脑风暴一些关于%s的想法:", 0.6, 1.0, 1.0, 1.0, 1.0, ""));
PARMS.put("OpenAi41", new OpenAi("OpenAi41", "ESRB文本分类", "按照ESRB进行文本分类", "text-davinci-003", "Provide an ESRB rating for the following text:\\n\\n\\\"%s\"\\n\\nESRB rating:", 0.3, 1.0, 1.0, 0.0, 0.0, "\n"));
PARMS.put("OpenAi42", new OpenAi("OpenAi42", "提纲生成", "按照提示为相关内容生成提纲", "text-davinci-003", "为%s提纲:", 0.3, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi43", new OpenAi("OpenAi43", "美食制作(后果自负)", "依据美食名称和材料生成美食的制作步骤", "text-davinci-003", "依据下面成分和美食,生成制作方法:\n%s\n成分:\n%s\n制作方法:", 0.3, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi44", new OpenAi("OpenAi44", "AI聊天", "与AI机器进行聊天", "text-davinci-003", "Human: %s", 0.9, 1.0, 1.0, 0.0, 0.6, "Human:AI:"));
PARMS.put("OpenAi45", new OpenAi("OpenAi45", "摆烂聊天", "与讽刺机器进行聊天", "text-davinci-003", "Marv不情愿的回答问题.\nYou:%s\nMarv:", 0.5, 0.3, 1.0, 0.5, 0.0, ""));
PARMS.put("OpenAi46", new OpenAi("OpenAi46", "分解步骤", "把一段文本分解成几步来完成", "text-davinci-003", "为下面文本生成次序列表,并增加列表数子: \n%s\n", 0.3, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi47", new OpenAi("OpenAi47", "点评生成", "依据文本内容自动生成点评", "text-davinci-003", "依据下面内容,进行点评:\n%s\n点评:", 0.5, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi48", new OpenAi("OpenAi48", "知识学习", "可以为学习知识自动解答", "text-davinci-003", "%s", 0.3, 1.0, 1.0, 0.0, 0.0, ""));
PARMS.put("OpenAi49", new OpenAi("OpenAi49", "面试", "生成面试题", "text-davinci-003", "创建10道%s相关的面试题(中文):\n", 0.5, 1.0, 10.0, 0.0, 0.0, ""));
}
public static String OPENAPI_TOKEN = "";
public static Integer TIMEOUT = null;
/**
* 获取ai
*
* @param openAi
* @param prompt
* @return
*/
public static List<CompletionChoice> getAiResult(OpenAi openAi, String prompt) {
if (TIMEOUT == null || TIMEOUT < 1000) {
TIMEOUT = 3000;
}
OpenAiService service = new OpenAiService(OPENAPI_TOKEN, TIMEOUT);
CompletionRequest.CompletionRequestBuilder builder = CompletionRequest.builder()
.model(openAi.getModel())
.prompt(prompt)
.temperature(openAi.getTemperature())
.maxTokens(1000)
.topP(openAi.getTopP())
.frequencyPenalty(openAi.getFrequencyPenalty())
.presencePenalty(openAi.getPresencePenalty());
if (!StringUtils.isEmpty(openAi.getStop())) {
builder.stop(Arrays.asList(openAi.getStop().split(",")));
}
CompletionRequest completionRequest = builder.build();
return service.createCompletion(completionRequest).getChoices();
}
/**
* 问答
*
* @param question
* @return
*/
public static List<CompletionChoice> getQuestionAnswer(String question) {
OpenAi openAi = PARMS.get("OpenAi01");
return getAiResult(openAi, String.format(openAi.getPrompt(), question));
}
/**
* 语法纠错
*
* @param text
* @return
*/
public static List<CompletionChoice> getGrammarCorrection(String text) {
OpenAi openAi = PARMS.get("OpenAi02");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 将一段话,概况中心
*
* @param text
* @return
*/
public static List<CompletionChoice> getSummarize(String text) {
OpenAi openAi = PARMS.get("OpenAi03");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 一句话生成OpenAi的代码
*
* @param text
* @return
*/
public static List<CompletionChoice> getOpenAiApi(String text) {
OpenAi openAi = PARMS.get("OpenAi04");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 一句话生成程序的命令,目前支持操作系统指令比较多
*
* @param text
* @return
*/
public static List<CompletionChoice> getTextToCommand(String text) {
OpenAi openAi = PARMS.get("OpenAi05");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 把一种语法翻译成其它几种语言
*
* @param text
* @return
*/
public static List<CompletionChoice> getTranslatesLanguages(String text, String translatesLanguages) {
if (StringUtils.isEmpty(translatesLanguages)) {
translatesLanguages = " 1. French, 2. Spanish and 3. English";
}
OpenAi openAi = PARMS.get("OpenAi06");
return getAiResult(openAi, String.format(openAi.getPrompt(), translatesLanguages, text));
}
/**
* 一句话生成Stripe国际支付API
*
* @param text
* @return
*/
public static List<CompletionChoice> getStripeApi(String text) {
OpenAi openAi = PARMS.get("OpenAi07");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 依据上下文中的表信息,生成SQL语句
*
* @param databaseType 数据库类型
* @param tables 上午依赖的表和字段 Employee(id, name, department_id)
* @param text SQL描述
* @param sqlType sql类型,比如SELECT
* @return
*/
public static List<CompletionChoice> getStripeApi(String databaseType, List<String> tables, String text, String sqlType) {
OpenAi openAi = PARMS.get("OpenAi08");
StringJoiner joiner = new StringJoiner("\n");
for (int i = 0; i < tables.size(); i++) {
joiner.add("# " + tables);
}
return getAiResult(openAi, String.format(openAi.getPrompt(), databaseType, joiner.toString(), text, sqlType));
}
/**
* 对于非结构化的数据抽取其中的特征生成结构化的表格
*
* @param text 非结构化的数据
* @return
*/
public static List<CompletionChoice> getUnstructuredData(String text) {
OpenAi openAi = PARMS.get("OpenAi09");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 把一段信息继续分类
*
* @param text 要分类的文本
* @return
*/
public static List<CompletionChoice> getTextCategory(String text) {
OpenAi openAi = PARMS.get("OpenAi10");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 把一段信息继续分类
*
* @param codeType 代码类型,比如Python
* @param code 要解释的代码
* @return
*/
public static List<CompletionChoice> getCodeExplain(String codeType, String code) {
OpenAi openAi = PARMS.get("OpenAi11");
return getAiResult(openAi, String.format(openAi.getPrompt(), codeType, code));
}
/**
* 将文本编码成表情服务
*
* @param text 文本
* @return
*/
public static List<CompletionChoice> getTextEmoji(String text) {
OpenAi openAi = PARMS.get("OpenAi12");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 求一段代码的时间复杂度
*
* @param code 代码
* @return
*/
public static List<CompletionChoice> getTimeComplexity(String code) {
OpenAi openAi = PARMS.get("OpenAi13");
return getAiResult(openAi, String.format(openAi.getPrompt(), code));
}
/**
* 把一种语言的代码翻译成另外一种语言的代码
*
* @param fromLanguage 要翻译的代码语言
* @param toLanguage 要翻译成的代码语言
* @param code 代码
* @return
*/
public static List<CompletionChoice> getTranslateProgramming(String fromLanguage, String toLanguage, String code) {
OpenAi openAi = PARMS.get("OpenAi14");
return getAiResult(openAi, String.format(openAi.getPrompt(), fromLanguage, toLanguage, fromLanguage, code, toLanguage));
}
/**
* 支持批量列表的方式检查情绪
*
* @param texts 文本
* @return
*/
public static List<CompletionChoice> getBatchTweetClassifier(List<String> texts) {
OpenAi openAi = PARMS.get("OpenAi15");
StringJoiner stringJoiner = new StringJoiner("\n");
for (int i = 0; i < texts.size(); i++) {
stringJoiner.add((i + 1) + ". " + texts.get(i));
}
return getAiResult(openAi, String.format(openAi.getPrompt(), stringJoiner.toString()));
}
/**
* 对一段代码进行解释
*
* @param code 文本
* @return
*/
public static List<CompletionChoice> getExplainCOde(String code) {
OpenAi openAi = PARMS.get("OpenAi16");
return getAiResult(openAi, String.format(openAi.getPrompt(), code));
}
/**
* 提取一段文本中的关键字
*
* @param text 文本
* @return
*/
public static List<CompletionChoice> getTextKeywords(String text) {
OpenAi openAi = PARMS.get("OpenAi17");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 事实回答答题
*
* @param text 文本
* @return
*/
public static List<CompletionChoice> getFactualAnswering(String text) {
OpenAi openAi = PARMS.get("OpenAi18");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 给一个产品设计一个广告
*
* @param text 文本
* @return
*/
public static List<CompletionChoice> getAd(String text) {
OpenAi openAi = PARMS.get("OpenAi19");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 依据产品描述和种子词语,给一个产品取一个好听的名字
*
* @param productDescription 产品描述
* @param seedWords 种子词语
* @return
*/
public static List<CompletionChoice> getProductName(String productDescription, String seedWords) {
OpenAi openAi = PARMS.get("OpenAi20");
return getAiResult(openAi, String.format(openAi.getPrompt(), productDescription, seedWords));
}
/**
* 把一个长句子简化成一个短句子
*
* @param text 长句子
* @return
*/
public static List<CompletionChoice> getProductName(String text) {
OpenAi openAi = PARMS.get("OpenAi21");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 自动修改代码中的bug
*
* @param codeType 语言类型
* @param code 代码
* @return
*/
public static List<CompletionChoice> getBugFixer(String codeType, String code) {
OpenAi openAi = PARMS.get("OpenAi22");
return getAiResult(openAi, String.format(openAi.getPrompt(), codeType, code, codeType));
}
/**
* 自动为一个表格生成数据
*
* @param rows 生成的行数
* @param headers 数据表头,格式如:姓名| 年龄|性别|生日
* @return
*/
public static List<CompletionChoice> getFillData(int rows, String headers) {
OpenAi openAi = PARMS.get("OpenAi23");
return getAiResult(openAi, String.format(openAi.getPrompt(), rows, headers));
}
/**
* 各种开发语言的两天机器人
*
* @param question 你的问题
* @param programmingLanguages 语言 比如Java JavaScript
* @return
*/
public static List<CompletionChoice> getProgrammingLanguageChatbot(String question, String programmingLanguages) {
OpenAi openAi = PARMS.get("OpenAi24");
return getAiResult(openAi, String.format(openAi.getPrompt(), question, programmingLanguages));
}
/**
* 机器学习模型方面的机器人
*
* @param question 你的问题
* @return
*/
public static List<CompletionChoice> getMLChatbot(String question) {
OpenAi openAi = PARMS.get("OpenAi25");
return getAiResult(openAi, String.format(openAi.getPrompt(), question));
}
/**
* 可以列出各方面的分类列表,比如歌单
*
* @param text 清单描述
* @return
*/
public static List<CompletionChoice> getListMaker(String text) {
OpenAi openAi = PARMS.get("OpenAi26");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 对一段文字进行情绪分析
*
* @param text
* @return
*/
public static List<CompletionChoice> getTweetClassifier(String text) {
OpenAi openAi = PARMS.get("OpenAi27");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 抽取文本中的航空代码信息
*
* @param text
* @return
*/
public static List<CompletionChoice> getAirportCodeExtractor(String text) {
OpenAi openAi = PARMS.get("OpenAi28");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 无上下文,语句描述生成SQL
*
* @param text
* @return
*/
public static List<CompletionChoice> getSQL(String text) {
OpenAi openAi = PARMS.get("OpenAi29");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 从文本中抽取联系方式
*
* @param extractContent 抽取内容描述
* @param text
* @return 从下面文本中抽取邮箱和电话:\n教育行业A股IPO第一股(股票代码 003032)\n全国咨询/投诉热线:400-618-4000 举报邮箱:mc@itcast.cn
*/
public static List<CompletionChoice> getExtractContactInformation(String extractContent, String text) {
OpenAi openAi = PARMS.get("OpenAi30");
return getAiResult(openAi, String.format(openAi.getPrompt(), extractContent, text));
}
/**
* 把一种语言转成另外一种语言代码
*
* @param fromCodeType 当前代码类型
* @param toCodeType 转换的代码类型
* @param code
* @return
*/
public static List<CompletionChoice> getTransformationCode(String fromCodeType, String toCodeType, String code) {
OpenAi openAi = PARMS.get("OpenAi31");
return getAiResult(openAi, String.format(openAi.getPrompt(), fromCodeType, toCodeType, fromCodeType, code, toCodeType));
}
/**
* 模仿好友聊天
*
* @param question
* @return
*/
public static List<CompletionChoice> getFriendChat(String question) {
OpenAi openAi = PARMS.get("OpenAi32");
return getAiResult(openAi, String.format(openAi.getPrompt(), question));
}
/**
* 依据描述生成对应颜色
*
* @param text
* @return
*/
public static List<CompletionChoice> getMoodToColor(String text) {
OpenAi openAi = PARMS.get("OpenAi33");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 自动为程序生成文档
*
* @param codeType 语言
* @param code
* @return
*/
public static List<CompletionChoice> getCodeDocument(String codeType, String code) {
OpenAi openAi = PARMS.get("OpenAi34");
return getAiResult(openAi, String.format(openAi.getPrompt(), codeType, code));
}
/**
* 依据短语生成相关文短
*
* @param text 短语
* @return
*/
public static List<CompletionChoice> getCreateAnalogies(String text) {
OpenAi openAi = PARMS.get("OpenAi35");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 把多行代码简单的压缩成一行
*
* @param codeType 语言
* @param code
* @return
*/
public static List<CompletionChoice> getCodeLine(String codeType, String code) {
OpenAi openAi = PARMS.get("OpenAi36");
return getAiResult(openAi, String.format(openAi.getPrompt(), codeType, code, codeType));
}
/**
* 依据一个主题创建一个故事
*
* @param topic 创作主题
* @return
*/
public static List<CompletionChoice> getStory(String topic) {
OpenAi openAi = PARMS.get("OpenAi37");
return getAiResult(openAi, String.format(openAi.getPrompt(), topic));
}
/**
* 第一人称转第3人称
*
* @param text
* @return
*/
public static List<CompletionChoice> getStoryCreator(String text) {
OpenAi openAi = PARMS.get("OpenAi38");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 依据笔记生成摘要说明
*
* @param scene 生成的摘要场景
* @param note 记录的笔记
* @return
*/
public static List<CompletionChoice> getNotesToSummary(String scene, String note) {
OpenAi openAi = PARMS.get("OpenAi39");
return getAiResult(openAi, String.format(openAi.getPrompt(), note));
}
/**
* 给定一个主题,让其生成一些主题相关的想法
*
* @param topic 头脑风暴关键词
* @return
*/
public static List<CompletionChoice> getIdeaGenerator(String topic) {
OpenAi openAi = PARMS.get("OpenAi40");
return getAiResult(openAi, String.format(openAi.getPrompt(), topic));
}
/**
* 按照ESRB进行文本分类
*
* @param text 文本
* @return
*/
public static List<CompletionChoice> getESRBRating(String text) {
OpenAi openAi = PARMS.get("OpenAi41");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 按照提示为相关内容生成提纲
*
* @param text 场景,比如 数据库软件生成大学毕业论文
* @return
*/
public static List<CompletionChoice> getEssayOutline(String text) {
OpenAi openAi = PARMS.get("OpenAi42");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 依据美食名称和材料生成美食的制作步骤
*
* @param name 美食名称
* @param ingredients 美食食材
* @return
*/
public static List<CompletionChoice> getRecipeCreator(String name, List<String> ingredients) {
OpenAi openAi = PARMS.get("OpenAi43");
StringJoiner joiner = new StringJoiner("\n");
for (String ingredient : ingredients) {
joiner.add(ingredient);
}
return getAiResult(openAi, String.format(openAi.getPrompt(), name, joiner.toString()));
}
/**
* 与AI机器进行聊天
*
* @param question
* @return
*/
public static List<CompletionChoice> getAiChatbot(String question) {
OpenAi openAi = PARMS.get("OpenAi44");
return getAiResult(openAi, String.format(openAi.getPrompt(), question));
}
/**
* 与讽刺机器进行聊天,聊天的机器人是一种消极情绪
*
* @param question
* @return
*/
public static List<CompletionChoice> getMarvChatbot(String question) {
OpenAi openAi = PARMS.get("OpenAi45");
return getAiResult(openAi, String.format(openAi.getPrompt(), question));
}
/**
* 把一段文本分解成几步来完成
*
* @param text
* @return
*/
public static List<CompletionChoice> getTurnDirection(String text) {
OpenAi openAi = PARMS.get("OpenAi46");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 依据文本内容自动生成点评
*
* @param text
* @return
*/
public static List<CompletionChoice> getReviewCreator(String text) {
OpenAi openAi = PARMS.get("OpenAi47");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 可以为学习知识自动解答
*
* @param text
* @return
*/
public static List<CompletionChoice> getStudyNote(String text) {
OpenAi openAi = PARMS.get("OpenAi48");
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
/**
* 生成面试题
*
* @param text
* @return
*/
public static List<CompletionChoice> getInterviewQuestion(String text) {
OpenAi openAi = PARMS.get("OpenAi49");
System.out.println(String.format(openAi.getPrompt(), text));
return getAiResult(openAi, String.format(openAi.getPrompt(), text));
}
}
... ...
# 数据源配置
spring:
datasource:
type: com.alibaba.druid.pool.DruidDataSource
driverClassName: com.mysql.cj.jdbc.Driver
druid:
# 主库数据源
master:
url: jdbc:mysql://rm-wz9740un21f09iokuao.mysql.rds.aliyuncs.com:3306/mqtt_broker?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: luhui
password: Luhui586
# 从库数据源
slave:
# 从数据源开关/默认关闭
enabled: false
url:
username:
password:
# 初始连接数
initialSize: 5
# 最小连接池数量
minIdle: 10
# 最大连接池数量
maxActive: 20
# 配置获取连接等待超时的时间
maxWait: 60000
# 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
timeBetweenEvictionRunsMillis: 60000
# 配置一个连接在池中最小生存的时间,单位是毫秒
minEvictableIdleTimeMillis: 300000
# 配置一个连接在池中最大生存的时间,单位是毫秒
maxEvictableIdleTimeMillis: 900000
# 配置检测连接是否有效
validationQuery: SELECT 1 FROM DUAL
testWhileIdle: true
testOnBorrow: false
testOnReturn: false
webStatFilter:
enabled: true
statViewServlet:
enabled: true
# 设置白名单,不填则允许所有访问
allow:
url-pattern: /druid/*
# 控制台管理用户名和密码
login-username: ruoyi
login-password: 123456
filter:
stat:
enabled: true
# 慢SQL记录
log-slow-sql: true
slow-sql-millis: 1000
merge-sql: true
wall:
config:
multi-statement-allow: true
\ No newline at end of file
... ...
# 项目相关配置 jhlt: # 名称 name: zhonglai # 版本 version: 3.8.2 # 版权年份 copyrightYear: 2022 # 获取ip地址开关 addressEnabled: false # 开发环境配置 server: # 服务器的HTTP端口,默认为8080 port: 8082 servlet: # 应用的访问路径 context-path: / tomcat: # tomcat的URI编码 uri-encoding: UTF-8 # 连接数满后的排队数,默认为100 accept-count: 1000 threads: # tomcat最大线程数,默认为200 max: 800 # Tomcat启动初始化的线程数,默认值10 min-spare: 100 # 日志配置 logging: level: com.ruoyi: debug org.springframework: warn # Spring配置 spring: # 资源信息 messages: # 国际化资源文件路径 basename: i18n/messages profiles: active: druid # 文件上传 servlet: multipart: # 单个文件大小 max-file-size: 10MB # 设置总上传的文件大小 max-request-size: 20MB # 服务模块 devtools: restart: # 热部署开关 enabled: true # redis 配置 redis: # 地址 host: 47.112.163.61 # 端口,默认为6379 port: 9527 # 数据库索引 database: 1 # 密码 password: Luhui586 # 连接超时时间 timeout: 10s lettuce: pool: # 连接池中的最小空闲连接 min-idle: 0 # 连接池中的最大空闲连接 max-idle: 8 # 连接池的最大数据库连接数 max-active: 8 # #连接池最大阻塞等待时间(使用负值表示没有限制) max-wait: -1ms # token配置 token: # 令牌自定义标识 header: Authorization # 令牌密钥 secret: abcdefghijklmnopqrstuvwxyz # 令牌有效期(默认30分钟) expireTime: 1440 rediskey: lh-openai # MyBatis配置 mybatis: # 搜索指定包别名 typeAliasesPackage: com.ruoyi.**.domain # 配置mapper的扫描,找到所有的mapper.xml映射文件 mapperLocations: classpath*:mapper/**/*Mapper.xml # 加载全局的配置文件 configLocation: classpath:mybatis/mybatis-config.xml # PageHelper分页插件 pagehelper: helperDialect: mysql supportMethodsArguments: true params: count=countSql # Swagger配置 swagger: # 是否开启swagger enabled: true # 请求前缀 pathMapping: /dev-api # 防止XSS攻击 xss: # 过滤开关 enabled: true # 排除链接(多个用逗号分隔) excludes: /system/notice # 匹配链接 urlPatterns: /system/*,/monitor/*,/tool/* mqtt: client: device_life: 180 # NameServer地址 rocketmq: name-server: 47.115.144.179:9876 # 默认的消息组 producer: group: deviceCommand send-message-timeout: 30000 send-topic: lh-chat-gpt send-tags: 1 sys: ## // 对于登录login 注册register 验证码captchaImage 允许匿名访问 antMatchers: /login,/register,/captchaImage,/getCacheObject,/v2/api-docs,/chatgpt/aiChatbot chatgpt: token: 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 timeout: 5000
\ No newline at end of file
... ...
{
"userAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36",
"cfClearance": "TQGfn7M2Bcs8orogGzH3W.IPzJT3K_qJ9l_71ohooho-1676276962-0-1-f17cd819.14bb9dea.a67d87f9-160",
"session_token" : "eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..l1ZTOzatjL-w2_7B.JTf72KXAHoaYza4pYgzsWIhYNzhw24i86YEt8WQ12lDyqWybWXPVzgcOf2iYMhe7LqIqo8KoDM8HxxqSarUjxLVuJ2pL4wrri_9AincvR2phvXY_51O-QKSesBVHgGgh_rnv9Vlgpcjw2_k5a9p6jC9kf2zB7qFFArNo5b3Y19hZlfSkPgxJVT_cSfQH9pEq93HvJJjwGLzoNybF8I-zuEtSVTZ1iWvXzvH-wvLwxP8i97OSowzhhyygtU_sP6se5f54zG0_ElVGCHcXxggT2-qREqMSUyNDq0rv4chfWZengBXw2CpkzhF_uA1C-SPSrHY0Mn-KER4W279gnjMYwQgt886E31Euo9c_uG-eljD2NV9lgRJdSxzG_SREqkp9ubYq_3UYFeLwE_oUt61ii88ND-mTBRf2kVD3YCZne1Y-xDTHutdqNCNZJJPI2Zq5aNObKU1BCrp3PCCDMmjGSfhg-HdZdqeE5rXCHBXcEE2HrGbRLtylXYrYy5ttVeHZH7OKDyBaCC2lfXK1nFjvtLigVfJlXJF5lnVhIlFQe-kxjro3NUqw4RjdGoA7SJi0zpsAOB1Y7cY4Qb2WC_vjD5OBSNHceOox3WDkQt8LA-E4_PqhnBvAOYnaPBbX4eJT836OTiy12FhxnOiKxQLO9xdMnYoV3P9g2wkPqAJb5lWGYN_GqJIgiuV9Z9zN3R5N6WSryYOwzAXd3ocYODexh4U19T8JVWjxL7lurv-qBtr2wZPDNBS8U2y5sp49EgTnMswiqUnB624m7oFpgukiY9ZtEootaKEUk876-MVN5WeWOx2kQNL6ptNvhFaaqCVr6iQzrwMxYUiz_A1NhRVoO2gmYvWuC7Hxu28qwzFOubY9JRoOto-EPeqWxy9s9xmJ_19xHBpV2ZbGzPx-iwOLK_HWGiPScgAL6enWpoxWJ0XnEhEL5pghLcEuz9NAIzwVxsvLgslmkaTIFsTyP0CssyIJWv7oB75_cPGv3QqOI76Hz8A7J7C27hNKVy0f6XHoACFY6cyXx0jMYlOJW3e5GCv03Ht6SfvZPs8gNwpAuTz7JF0VliozvDLx7CM5SrBIt_iJnUZ_RM_8GBmorR1KThMtKDuvfkFNZN9dRPDVhMt7AGpZlKoJpADxH9lB7srNVSSr95PnZmsz4zwep8m_yYM9yjMTiIDn0dJifaEe_NH1Yda86yXTxhqAdD8j7ZbqvGGl75W_Ru-kvuB6hvE6PWy_6_IxwHrrDSwELjPwpgyacpJ3e2mGwAP1pkozJLWRJJkTlD-CR-PeBIhiFKk0FuKdXqnxtk4TghB7yqpUE25fLAhFu2yRNlR9jyXRPc8_mUWIyX3fcS0QDlaUY6YYGu5RlaomW5MztW80ij_h3YSObiLJbRjZe4bUWC7-p48a2YMOlDLIq6OcsXKd4ToBO3sFbnsmKUDqTt4TdU-prLwRCs1rqeRY1--vjGb8Zlju0T1-JrSJ4UimWm9CcFMz4JvuMXieVEKQ4TlVKseKM1t7jkNZmdBl4eoJth1lJvvVhlYTduxA8mumZAYjnCb-IT1pmKOxJkKtdjHwfCfEp7Jb4NcGrjfvMCOJzIyzM8GCf7gz8J-701g-BCRLPFQvER_t5pF6Re6GO8B3fHtrBQP8jxJNmM5yYl3YLFbWcYpNRBCMbuyIY88z4ALZ2Y-aXhkdTCX-_nVUDoz5PqEb20S7HJ6nkLHpNf9L95AZsZGfww9cfU5YjJs-8COD5ScOltZdEeTfUY2Q6qeM6N3p3wIREGKM6cqGFTyME1pPScNz-3ld0Fc5w3XHlU_o_DRt0TS8WMEG2chUtECsCy2M2J9Kytd2IOQLTSDIhGSCv6syiv8jVSUKThi3aQxdSk-t-cDWe9HjyIjdZ1lh9oNUa2-o7XKGg43TOgnUNUkHAEgfhD8LUPlwqUxJ6a0BDRltgVYnH7vGgPukiKXE-Li7Ks_HGgQodQowAucB9WKtkjdvU4iAtfKgcZXawci-vWM4EKLL8bpbR2MVUqDs7ie_d-Qzcxc9g_qEtWlByiil4zNUmwU3XGHp4nSHopWD1TiDZPDw5XgaXpAOukwFmrMzzvBE50uSowubbW1hbcKjVhmlZGgG6s0rwMwLugWio1tD-FJ4UgoaKxY65_j8vZhmuNZv_uIRgUHyAfJ2O3v-VBMmIHwrtfwUE-uHdCwW-RnjsGlxAI7sSKHpRV736pqukeC_XGEshq2Zv13S3Lt0MzL02P34kV3RD7n2OealEyxsuk_uexQo6DshiWw60pEgPwc12A7cYSWQODD7vJnkjXlFUPykNmqKSBTf1jhmIUWkEQBolEe7GjCb5YpZl5CZLiEN6v6WlOGOjW-o5UgT_egb7N4gu4Tj-6tv5PAZ3-lf8PUDzJ2reVhYkp_ToKdZ96aOhDQ7PFAqBYDc8A8om-zhF5A_zOeJmgAYEP3DNqE9P-PvC-1tn_kV99pfHD2ciVBXONCillWYLam1oOA3n2ABrHxvMg.0phK2SHDerfwz7VPG4rzhQ"
}
... ...
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
<!-- 全局参数 -->
<settings>
<!-- 使全局的映射器启用或禁用缓存 -->
<setting name="cacheEnabled" value="true" />
<!-- 允许JDBC 支持自动生成主键 -->
<setting name="useGeneratedKeys" value="true" />
<!-- 配置默认的执行器.SIMPLE就是普通执行器;REUSE执行器会重用预处理语句(prepared statements);BATCH执行器将重用语句并执行批量更新 -->
<setting name="defaultExecutorType" value="SIMPLE" />
<!-- 指定 MyBatis 所用日志的具体实现 -->
<setting name="logImpl" value="SLF4J" />
<!-- 使用驼峰命名法转换字段 -->
<!-- <setting name="mapUnderscoreToCamelCase" value="true"/> -->
</settings>
</configuration>
... ...
<?xml version="1.0" encoding="UTF-8"?>
<assembly>
<id>bin</id>
<!-- 最终打包成一个用于发布的zip文件 -->
<formats>
<format>zip</format>
</formats>
<!-- Adds dependencies to zip package under lib directory -->
<dependencySets>
<dependencySet>
<!--
不使用项目的artifact,第三方jar不要解压,打包进zip文件的lib目录
-->
<useProjectArtifact>false</useProjectArtifact>
<outputDirectory>lib</outputDirectory>
<unpack>false</unpack>
</dependencySet>
</dependencySets>
<fileSets>
<!-- 把项目相关的说明文件,打包进zip文件的根目录 -->
<fileSet>
<directory>${project.basedir}</directory>
<outputDirectory>/</outputDirectory>
<includes>
<include>README*</include>
<include>LICENSE*</include>
<include>NOTICE*</include>
</includes>
</fileSet>
<!-- 把项目的配置文件,打包进zip文件的config目录 -->
<fileSet>
<directory>${project.basedir}\src\main\resources\configs</directory>
<outputDirectory>../configs</outputDirectory>
<includes>
<include>*.properties</include>
</includes>
</fileSet>
<!-- 把项目的配置文件,提出来 -->
<fileSet>
<directory>${project.basedir}\src\main\resources</directory>
<outputDirectory>/</outputDirectory>
<includes>
<include>*.properties</include>
<include>*.yml</include>
</includes>
</fileSet>
<!-- 把项目的脚本文件目录( src/main/scripts )中的启动脚本文件,打包进zip文件的跟目录 -->
<fileSet>
<directory>${project.basedir}\bin</directory>
<outputDirectory></outputDirectory>
<includes>
<include>start.*</include>
<include>stop.*</include>
</includes>
</fileSet>
<!-- 把项目自己编译出来的jar文件,打包进zip文件的根目录 -->
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory></outputDirectory>
<includes>
<include>*.jar</include>
</includes>
</fileSet>
</fileSets>
</assembly>
\ No newline at end of file
... ...
... ... @@ -19,6 +19,7 @@
<module>lh-central-control</module>
<module>lh-backups</module>
<module>lh-alarm</module>
<module>lh-openai</module>
</modules>
<packaging>pom</packaging>
... ...